LENR in a Can Near instant transmutation of Tungsten using Ohmasa Gas

Bob W. Greenyer B. Eng. (Hons.)

Phenomenological hypothesis

- The process likes to 'fit things into a small box', therefore energetically advantageous product will be favoured
- Statistical guide for products outside of energy yield is crustal abundance, since driving processes are ubiquitous (friction, fracture, compression, cavitation, sound, electrical discharge etc.)
- Process likes to reduce input materials to Alpha particles
- Products are largely Alpha conjugate nuclei including Alphas, with **Carbon**, Oxygen, Silicon, Calcium etc. very common
- Energetic Alphas can lead to transmutation
- Production of protons and tritium due to fermionic nuclei other fermionic nuclei, for example are favoured (23Na, 27Al, 61Ni, 207Pb) as they don't easily fit in the small box condensate

Number	Element	Abundance (m
8	<u>Oxygen</u>	4.61 x 10 ⁵
14	Silicon	2.82 x 10 ⁵
13	Aluminum	8.23 x 10 ⁴
26	<u>lron</u>	5.63 x 10 ⁴
20	Calcium	4.15 x 10 ⁴
11	Sodium	2.36 x 10 ⁴
12	Magnesium	2.33 x 10 ⁴

https://sciencenotes.org/abundance-ofelements-in-earths-crust-periodic-table-and-list/

lead than to make gold.

S. V. Adamenko Lead - Proton 21 Labs

Fig. 5:

Results of local analyses of the element composition in 277 copper (Cu mass. 99.99 %) accumulating screens, each of them was used in the experiment with copper target of the same purity.

The method of investigation is X-ray electron probe microanalysis (REMMA102 device, element detection range is from Na to U).

Langmuir

https://chavascience.com/en/hydrogen/langmuir-excess-energy-from-hydrogen

1909 onwards:

"Gas release from a W filament in a couple of days 7000 times its own volume of gas was released. There was a possibility that some of the gasses came from water vapour from glass and gasses from the vacuum system."

"The water vapour of molecules in contact with the hot filament produced a volatile oxide of tungsten and the hydrogen was liberated in atomic form."

Experimental Attempts to Decompose Tungsten at High Temperatures (1922) by Gerald L. Wendt and Clarence E. Irion

Received May 8, 1922 J. Am. Chem. Soc.1922 44 9 1887-1894 Publication Date:September 1, 1922 Ein Beitrag des Kent Chemical Laboratory von der University of Chicago Von Gerald L. Wendt und Clarence E. Irion Erhalten am 8. Mai 1922

Source: <u>bit.ly/3zxE1pE</u>

Experimental Attempts to Decompose Tungsten at High Temperatures "positively identified was the strong yellow line of helium."

"The appearance of helium and the absence of hydrogen is interesting for two reasons. In the first place, it seems to dispose of the objection that the helium arose from gas remaining in the wire, for in that case hydrogen should also have been visible, for it was probably originally present in the wire in much larger quantity than was helium. In the second place, if the helium does arise from a decomposition of the tungsten atoms, the absence of hydrogen is also interesting because the atomic weight of tungsten is exactly 46 times the atomic weight of helium*, and Rutherford was also unable to detect hydrogen from the bombardment with alpha-rays of carbon, oxygen, magnesium, silicon, and sulfur, whose weights are multiples of 4, though he did detect it with boron, nitrogen, fluorine, sodium, phosphorus and aluminum, whose weights are not such multiples.

* neutron not proposed until May 1932 by James Chadwick

Discharge driven transmutation of W by Simon Brink

Tungsten Electrodes

Tungsten electrodes and water subject to momentary capacitor discharge Simon Brink - ICCF21

Increases in Si, Ca, Ti, V and Cr in addition to production of Fe, Cu, Zn, Zr, alongside *Decreases* in the proportion of W

Elemental analysis of Tungsten electrodes subject to capacitor discharge with water Simon Brink - ICCF21

Exchange reactions with Oxygen

Since 2018, I have been volunteering along with Phillip Power in New Zealand, on behalf of the MFMP, to build a Low Energy Nuclear Reaction [LENR] calculator that is free for the community to use.

You can find it at <u>nanosoft.co.nz</u>. It was initially based on net-energy yielding reactions, with and without cold neutrino data that was supplied by Dr. Alexander Parkhomov, fellow of the Russian Academy of Science.

id	neutrino	id_sub	E1	A1	nBorF1	Z1	aBorF1	E2	A2	nBorF2	Z2	аВс
87256	none	32099	0	16	b	8	b	W	180	b	74	

id	neutrin	id sub	E1	A1	nBorF1	Z1	aBorF1	E2	A2	nBorF2	Z2	aBorF2	E3	A3	nBorF3	Z3 a	BorF3	E4	A4	nBorF4	Z4	aBorF4	MeV
87256	5 none	32099	0	16	b	8	b	w	180) b	74	b	Zr	96	b	40	b	Mo	100	b	42	b	117.485000
87342	2 none	32238	0	16	b	8	b	W	184	b	74	b	Zn	70	b	30	b	Те	130	b	52	b	106.057000
87248	3 none	32093	0	16	b	8	b	w	180) b	74	b	Zn	70	b	30	b	Те	126	b	52	b	105.543000
87289	none	32172	0	16	b	8	b	w	182	2 b	74	b	Zn	70	b	30	b	Те	128	b	52	b	105.377000
87247	none	32092	0	16	b	8	b	w	180) b	74	b	Zn	68	b	30	b	Те	128	b	52	b	104.625000
87318	3 right	140410	0	16	b	8	b	W	183	f f	74	f	Cu	65	f	29	b	Xe	134	b	54	b	104.346895
87288	3 none	32171	0	16	b	8	b	W	182	2 b	74	b	Zn	68	b	30	b	Те	130	b	52	b	103.973000
87246	5 none	32091	0	16	b	8	b	W	180) b	74	b	Zn	66	b	30	b	Те	130	b	52	b	101.670000
87245	5 right	140405	0	16	b	8	b	W	180) b	74	b	Cu	65	f	29	b	Xe	131	f	54	f	101.553344
87317	7 right	140411	0	16	b	8	b	W	183	6 f	74	f	Cu	63	f	29	b	Xe	136	b	54	b	100.963708
87237	7 none	32087	0	16	b	8	b	W	180) b	74	b	Fe	58	Ь	26	b	Ва	138	b	56	b	96.514900
87238	3 right	110384	0	16	b	8	b	W	180	b	74	b	Fe	58	b	26	b	La	138	b	57	f f	94.838203
87236	5 right	110385	0	16	b	8	b	W	180	b	74	b	Fe	57	f	26	f	La	139	f	57	b	93.560193
87235	5 none	32086	0	16	b	8	b	W	180) b	74	b	Cr	54	b	24	b	Ce	142	b	58	b	87.538100
87234	l right	89700	0	16	b	8	b	W	180) b	74	b	V	51	f	23	b	Nd	145	f	60	f	79.882134
87315	5 right	89707	0	16	b	8	b	W	183	f	74	f	V	51	f	23	b	Nd	148	b	60	b	78.941324
87232	2 none	32085	0	16	b	8	b	W	180) b	74	b	Ti	50	b	22	b	Nd	146	b	60	b	78.632100
87233	8 right	89701	0	16	b	8	b	W	180) b	74	b	V	50	b	23	f	Nd	146	b	60	b	76.419770
87282	2 none	32168	0	16	b	8	b	W	182	2 b	74	b	Ti	50	b	22	b	Nd	148	b	60	b	76.303300
87339	none	32236	0	16	b	8	b	W	184	b	74	b	Ti	50	b	22	b	Nd	150	b	60	b	74.896800
87283	3 right	89704	0	16	b	8	b	W	182	2 b	74	b	V	50	b	23	f	Nd	148	b	60	b	74.091035
87340) right	89710	0	16	b	8	b	W	184	b	74	b	V	50	b	23	f	Nd	150	b	60	b	72.684479
87231	none	32084	0	16	b	8	b	W	180	b b	74	b	Ti	48	b	22	b	Nd	148	b	60	b	72.160100
87314	l none	32207	0	16	b	8	b	W	183	6 f	74	f	Ti	49	f	22	f	Nd	150	b	60	b	71.378500
87229	none	32083	0	16	b	8	b	W	180	b b	74	Ь	Ca	48	b	20	b	Sm	148	b	62	b	69.836000
87351	none	32374	0	16	b	8	b	W	186	b b	74	b	Ca	48	b	20	b	Sm	154	b	62	b	69.752100
87281	none	32167	0	16	b	8	b	W	182	2 b	74	b	Ti	48	b	22	b	Nd	150	b	60	b	69.421500
87338	3 none	32235	0	16	b	8	b	W	184	b	74	b	Ca	48	b	20	b	Sm	152	b	62	b	68.979000
87280) none	32166	0	16	b	8	b	W	182	2 b	74	b	Ca	48	b	20	b	Sm	150	b	62	b	68.755400
87312	2 right	65284	0	16	b	8	b	W	183	6 f	74	f	Ca	48	b	20	b	Eu	151	f	63	b	68.196540
87228	3 none	32081	0	16	b	8	b	W	180) b	74	b	Ca	46	b	20	b	Sm	150	b	62	b	66.318700
87311	l right	65285	0	16	b	8	b	W	183	6 f	74	f	Ca	46	b	20	b	Eu	153	f	63	b	65.815641
87337	7 none	32234	0	16	b	8	b	W	184	b	74	b	Ca	46	b	20	b	Sm	154	b	62	b	65.396500
87279	none	32165	0	16	b	8	b	W	182	2 b	74	b	Ca	46	b	20	b	Sm	152	b	62	b	65.210200
87230) none	32082	0	16	b	8	b	W	180	b	74	b	Ti	46	b	22	b	Nd	150	b	60	b	63.855800
87227	/ none	32080	0	16	b	8	b	W	180	b	74	b	Ca	44	b	20	b	Sm	152	b	62	b	62.330900
87278	3 none	32164	0	16	b	8	b	W	182	2 b	74	b	Ca	44	b	20	b	Sm	154	b	62	b	61.185200
87226	right	65275	0	16	b	8	b	W	180	D D	74	b	Ca	43	f	20		Eu	153	t .	63	b	57.990159
8/225	none	32079	0	16	b	8	b	W	180	b	/4	b	Ca	42	D	20	b	Sm	154	b	62	b	57.060500
87212	none	32070	0	16	b	8	D	W	180	b	74	b	Si	30	D	14	b	Er	166	b	68	b	35.149000
8/303	right	32102	0	16	D	8	D	W	183		74		Si	30	D	14	b	Im	169	t F	69	b	34.552836
87268	none	32160	0	16	D	8	D	W	182	D	74	D	SI	30	D	14	D	Er	108	D	68	D	34.506300
07333	none	32232	0	16	D	8	D		184		74	D	5	30	D	14	D	Er	1/0	D	60	D	34.124400
07211	none	32069	0	16	D	ð	D		180	D	74	D	5	29	ſ	14	T 4	Er	10/	T F	68		31.069100
07302	none	32206	0	16	D	8	D	W	183		74	L L	5	29	T h	14	۲ ه	Er	1/0	D	60	D	30.929300
07210	/ none	32068	0	10	D	0 0	b		100		74	D h	SI	28	D £	14	D F	Er T~	160	Ð	60	D	30.355500
8726	nght	32100	0	16	b	0	b		102	. D	74	b	SI	29	h	14	h		170	h	69	b	28 641600
0/200	none	32123		110	D	Ø	U	VV	102		/4		121	28	D	14	D		170	D	08		20.041600
								_	_														
E3	A3	nBo	rF	-3	Z3	а	Bor	F	3	E4	A	4 n	B	0	rF4	Ζ4	1 aE	30	rF	4		Me	V
		Ŀ			40		l-			Ma	1 /	20		Ŀ		4-		Ŀ		4	4 -	7 40	
IZľ	96	D			40		D			MO	Τ(00		D		44	2	C)	11	T	7.46	5000

(Jnerma) 20 **Tansmutation** youtu.be/AZfQQyJG6KI

Grounding 01 Urutskoev et. al.

Urutskoev - Exploding Ti in water produced

- Transmutation of Titanium (mostly 48Ti) to Na, Mg, Al, Si, K, Ca, V, Cr, Fe, Ni, Cu, Zn
- 'Ball lightning' (spectra Ti, Fe (even very weak lines were detected), Cu, Zn, Cr, Ni, Ca, Na.) - Synthesised material transported
- Monopole' detection
- Detected "Strange Radiation" and "Condensed Plasmoid"

Source: <u>bit.ly/3jsHO1W</u>

Grounding 02

ON THE POSSIBLE MAGNETIC MECHANISM OF SHORTENING THE RUNAWAY OF RBMK-1000 REACTOR AT CHERNOBYL NUCLEAR POWER PLANT

RECOM, Russian Research Center "Kurchatov Institute," Russia

The official conclusion about the origin of the explosion at the Chernobyl Nuclear Power Plant (CNPP) is shown to contradict significantly the experimental facts available from the accident. The period of reactor runaway in the accident is shown to be unexplainable in the framework of the existing physical models of nuclear fission reactor. A hypothesis is suggested for a possible magnetic mechanism, which may be responsible for the rise-up of the reactor reactivity coefficient at the fourth power generating unit of CNPP in the course of testing the turbine generator by letting it run under its own momentum.

D. V. FILIPPOV AND L. I. URUTSKOEV

G. LOCHAK

Fondation Louis de Broglie, France

A. A. RUKHADZE

General Physics Institute, Russian Academy of Science, Russia

Source: <u>bit.ly/3ju7cEv</u>

Grounding 02 Paramagnetic bound states

- stimulate nuclear reactions Oxygen is a good example.
- graphite is used in reactors."
- "A number of eyewitnesses including the members of the Government spectrum unusual for the human eye."

Theory is that paramagnetic nuclei can capture magnetic charge and these can

"A study of the elemental composition of the post-accident fragments of graphite blocks from the fourth unit of the Power Plant, considerable islets of AI, Si, Na, and U were found within the graphite depth, although it is well known that highly pure

Commission have noted that the glow observed above the ruined reactor during the first days after the accident was unnaturally coloured. This fact can be easily explained within the framework of interaction of magnetic monopoles with excited atoms, which shifts the electronic levels of optical transitions, giving rise to a color

Source: <u>bit.ly/3ju7cEv</u>

Grounding 03 Bogdanovich et. al.

In plasma flow discharge experiments, observed

- production of spherical and toroidal plasmoids
- long lived plasmoids + groups in crystal-like structure
- monopole like radiation, confirmed in beam-line

Fig. 5. A film with traces. The most visible traces are marked in white

Source: <u>bit.ly/3BrjxQ1</u>

Fig. 6. Experimental scheme in the synchrotron of LPI (Lebedev Physical Institute). 1 - an X-ray film; 2 - a magnet deflecting the electron beam; 3, 4, 5 - sections of the conversion target.

Fig. 7. Bremsstrahlung tracing. A white circle marks

"birds". On the right there is an enlarged image.

Monopole - Inferred field strucutre

Perevozchikov N.F et. al.

Bogdanovich et. al. National Research Nuclear University MEPhl

Fig. 7. The stream of electrons from the dielectric surface and complex object of the type of luminous rings that is formed by it, rotating around its own common axis, and "rolling" on the surface.

"A stream of particles (presumably electrons), which causes air to glow (a similar pattern is observed after the emission of electrons from the electron source or their injector through the foil), is emitted from the surface. After 10–20 s, **this stream is formed into a set of several rings (5 or 6) of the same diameter, which rotate around both their own and common axis parallel to the plane (horizontal)** (Fig. 7)."

Bogdanovich, B. Y., Volkov, N. V., Len', N. A., & Nesterovich, A. V. (2019). <u>Video Recording of Long-Lived Plasmoids near Objects Exposed to Remote and Direct Effects of High-Current Pinch Discharges.</u> Technical Physics, 64(4), 465–469. doi:10.1134/s1063784219040066

Fig. 6. A luminous toroidal object that performs translational and rotational motion over the surface of the electrode.

Video Overview

Ken Shoulders on EVOs - 2010

"Now electrical engineering does not let charge disappear, but it does in this multiple toroidal form, you see an EVO, is a cluster, it's one way of thinking of it, of electrons and you know and physics says, yeah, well, you can get Cooper Pairs at two, Muons [207 × electron], and maybe Tauons [3477.48 × electron] beyond that... they are all just clusters of electrons of a larger size - but heck, they rarely go above the 100s and I see them into the billions worth - no trouble at all. So I am working with a WAY upscale class of guys."

"It enshrouds stuff, this is all written in some of these things on the web. When it enshrouds things, it can allow them to disappear, it does make atoms disappear in my laboratory work, well that's interesting, you know, because, when they disappear, I can transport all this stuff through to somewhere else, and it reappears. That's teleportation. So, it does that, very nicely."

Ken Shoulders on EVOs - 2010

It's written in the 'law' that says this [said in a parrot like monotonous voice] CHARGE IS CONSERVED | MASS IS CONSERVED | ENERGY IS CONSERVED $E=mc^2 \cdots$ and all hitched together. WRONG - just - DEAD WRONG Cause I can take one of these funny little particles and change its charge from actual measurement, this is no handwaving thing. I can measure it with an instrument, I can do it any day you want to - you can change it over a billion to one (1,000,000,000:1) and still have it visible.

The heck of it is, I can still keep reducing the charge to where it becomes an item that WALKS RIGHT THROUGH THINGS.

Finally, one day, it showed up, I was shooting through metal. It shouldn't be able to transmit that particle, charged, through that piece of metal. It did it, no problem violation of physics - fundamental, nasty violations, so...

Takaaki Matsumoto, 1997 Electro-Nuclear Collapse experiments

The experiments shown in Table 1 were carried out with a thin lead metal wire electrode (diameter of 1 mm), inserted in ordinary water solution. Copper plates were used for a reference box electrode as well as for monitoring plates. Discharges were made under a pulsed AC mode of 120 V. The products on the copper plates were examined by a scanning electron microscope (SEM) and the elements were analysed with energy dispersive Xray spectroscopy (EDX).

- MATSUMOTO Takaaki, ICCF-7, Vancouver, (1998)

******	Solution	ON	OFF [,]	No. of Shots
Exp. S70:	KOH (1.5 Mol/l)	80 msec	20 sec	4
Exp. 71:	KOH (1.5 Mol/l)	800 msec	20 sec	1
Exp. 72:	Cs2CO3 (0.6 Mol/l)	20 msec	20 sec	5

Table 1: Experimental Conditions

Fig. 13: Eruption of C film from Pb ball(a) S70CDA (b) 72RAA (c) 72BBGSystems of Exps. S70 and 71 were perfectly carbon free.

Eruption of Carbon from Pb ball

17-JUL-97

Systems of Exps. S70 and 71 were perfectly carbon free.

- Fig. 14: Eruption of C film from Pb ball (a) 72BDP (b) 72RAF (c) 72BBF
- Fig. 15: Eruption of C film from Pb ball (a) 72BDC (b) 72BCH (c) 72RAD (d) 72BCD

Eruption of Carbon from Pb ball

Eruption of Carbon from Pb ball

(a) 71BDB (b) Expanded 71BDB

Eruption of Carbon from Pb ball

Fig. 23: Generation of thin C films (a) S70DDF (b) S70DDE

Takaaki Matsumoto

My three ring traces (Fig. 4a of Ref. 5 or Fig. 2 in Ref. 1)

were products of those simultaneous explosions. Here, I have to apologize to readers for an insufficient assignment made in Ref. 5 that quad neutrons collapsed. It was made clear by later experiments that clusters that collapsed were atomic clusters that could have a diameter of hundreds of micrometres and involve much more nuclei.³ Very amazingly, it was also found later that the ring products consisted of conventional elements, mainly carbon, not dependent on collapsed materials.³ This

process was called nuclear regeneration. Furthermore, white,

FUSION SCIENCE AND TECHNOLOGY VOL. 40 JULY 2001

OHMA, 2019

100 µm

Matsumoto, T. (1993). Observation of Meshlike Traces on Nuclear Emulsions during Cold Fusion. Fusion Technology, 23(1), 103–113. doi:10.13182/fst93-a30125

100 µm

Project OHMA

Ohmasa Vibrator Transmutor
Dr. Ryushin Ohmasa

Observation
Bob Greenyer

Comparative image: Dr. Felix Scholkmann

Yull Brown (gas) radiation remediation HHO

- Imagine Magazine (1988)
- a reduction of radiation in the order of over 99% Clean Energy Review

"The most startling claim by the inventor in the press is that the gas produced in his process can reduce nuclear and toxic waste to harmless carbon." -

I 1991/2 - Using a slice of radioactive Americium ... Brown melted it together on a brick with small chunks of steel and Aluminum ... After a couple of minutes under the flame, the molten metals sent up an instant flash in what Brown says is the reaction that destroys the radioactivity. Before the heating and mixing with the other metals, the Americium... registered 16,000 curies per minute of radiation. Measured afterward by the [Geiger Counter], the mass of metals read less than 100 curies per minute, about the same as the background radiation in the laboratory where Brown was working. This experiment indicated

Fast track to coherence?

Ohmasa vibrator plates

Omasa Vibrator Pd MgCl2 SEM MAG: 2500x HV: 15 kV WD: 8.7 mm

O N

10 µm

Project OHMA - Strong evidence of fusion

utrino	id_sub	E1	A1	nBorF1	Z1	aBorF1	E2	A2	nBorF2	Z2	aBorF2	Е	Α	nBorF	Ζ	aBorF	
one	661	Mg	25	f	12	f	Mg	25	f	12	f	Cr	50	b	24	b	ĺ
one	663	Mg	26	b	12	b	Mg	26	b	12	b	Cr	52	b	24	b	
one	662	Mg	24	b	12	b	Mg	26	b	12	b	Cr	50	b	24	b	ĺ

Omasa Vibrator Pd MgCl2 MAG: 250x HV: 15 kV WD: 8.7 mm

10 Minute exposure of Indium to Vibrator

The experiment

-

P

Experiment design youtu.be/QqDeiX5QC5k

OH radical self-masing?

- Cut through 10-Yen coin was 'like a laser'
- Gas contains OH radical wondered if it was masing
- Like langmuir, perhaps formation of metal oxides produces more atomic hydrogen

OHMA - Ohmasa Gas mass analysis by Tokyo Institute of Technology

Gas contained 0.28% atomic hydrogen

ルトルの	Gas composi	tion table		
<成分 Gas	生ガス(モ) Raw (Mo	レ%) * le %)	処理ガス(モ) (Mo	ル%) * * le %)
ponent	(A)	(B)	(a)	(b)
	60.00	55.00	- 58.00	54
	0.20	0.28	0.20	0.
HD	0.05	0.07	0.05	0.0
<u>I</u>	0.80	0.90	0.90	0.9
0	2.50	3.50	3.90	3.9
2O	3.00	3.50	3.30	3.3
⁵ CO	2.80	4.80	6.70	6.70
2	18.00	21.00	23.00	. 23.00
02	0.12	0.12	0.13	0.13
可機响				

OH radical self-masing?

Chairmen - W.J.M.F. Collis, C.Pace

1-13

2019

EPTEMBER

acıs S. Maria degli Angoli - Assisi Italy 🖉 🖡

C F - 2 2

at 1

0

Slobodan Stankovic ICCF-22

Gr.

Effect on 2% Thorium doped Tungsten

Welding rod surface before x100

TM3030Plus0578

Spheres smashing through surface

Spectrum	с	0	Na	Mg	Al	Si	S	К	Са	Ti	Fe	W
1	55.75643	26.34176	1.248022	0	1.917946	0	0	0.577729	1.472459	0.085924	1.907429	10.04
2	19.364	51.26929	0.643277	0.941014	6.871939	0	0.132079	0.272226	14.18261	0	3.650638	2.448
3	35.28629	51.19756	0.302049	0.248084	1.912974	5.933042	0.030934	0.249386	1.156666	0.101526	0.819977	2.620
4	39.62554	46.34203	0.687423	0.431976	1.50917	0	0.866315	0.144056	5.840321	0.059957	0.386008	3.770
5	28.4955	53.76489	0.165323	0.115971	1.219148	9.08513	0.221718	0.384259	0.587782	0	0.653756	5.007
6	37.96587	39.78923	0.918712	0.802863	2.611581	0	3.871805	0.046399	2.741155	0.262063	1.961683	8.583
7	31.78559	55.57206	0.197334	0.055443	1.921408	0.21974	0	0.097698	0.789409	0	1.517871	7.26
8	41.77592	44.07314	0	0	3.084956	0.406769	0.260228	0.383138	2.724289	0.348263	0.769514	5.79
9	38.83178	42.59513	0.231325	0	1.837339	2.726564	0	0.223735	0.694488	0	0.330255	11.64
10	38.32838	52.29152	0.266355	0.055046	1.210367	0.658769	0	0.080655	1.125616	0.006625	0.11518	5.557
11	36.1465	47.43391	0.217605	0	0.909725	0	0.212686	0	0.765016	0.01223	1.76858	11.74
Mean	36.66925	46.42459	0.443402	0.240945	2.273323	1.730001	0.508706	0.223571	2.916346	0.07969	1.261899	6.771
Sigma	8.947438	8.287322	0.381392	0.34047	1.648484	3.047958	1.143473	0.174273	4.042831	0.118991	1.034041	3.364
SigmaMe	2.697754	2.498722	0.114994	0.102656	0.497037	0.918994	0.34477	0.052545	1.218959	0.035877	0.311775	1.01

SEM

2%Th+W-vs-OhmasaGas SEM MAG: 1500x HV: 15 kV WD: 8.1 mm

SEM MAG: 1500x HV: 15 kV WD: 8.1 mm

nanosoft.co.nz/Fission.php

eutrino	id_sub	E	А	nBorF	Ζ	aBorF	E1	A1	nBorF1	Z1	aBorF1	E2	A2	nBorF2	Z2	aBorF2	
none	711	W	180	b	74	b	Ti	50	b	22	b	Те	130	b	52	b	
none	710	W	184	b	74	b	Ca	48	b	20	b	Xe	136	b	54	b	
none	707	W	182	b	74	b	Ca	48	b	20	b	Xe	134	b	54	b	
none	705	W	180	b	74	b	Ca	48	b	20	b	Xe	132	b	54	b	
none	706	W	180	b	74	b	Ca	46	b	20	b	Xe	134	b	54	b	
none	709	W	182	b	74	b	Ca	46	b	20	b	Xe	136	b	54	b	
none	708	W	180	b	74	b	Ca	44	b	20	b	Xe	136	b	54	b	ſ

9		
10	5	
C Al Si S Ca Fe	4	3 20 um

Enter your Core Query below: (but clear any initial, place-holding or old one first)

E = 'W' order by MeV desc

Filtering by Nuclear/Atomic Bosons/Fermions: For no filtering, select 'either'

nBorF1 either 😂 aBorF1 either 😂

nBorF2 either 😂 aBorF2 either 😂

Execute Query

W182 & W184=57%

Input used for this run:

Full SQL Query: "select * from FissionAll where neutrino = 'none' and E = 'W' order by MeV desc" were found. Results (in new tab - may need refreshing - temporarily stored on server - make your own copy)

4123 0.888158 0.30388 4753 0.786228 1114 0.457154 4319 0.238442 L438 0.071893

Spectrum	С	0	Mg	AI	Si	Ρ	К	Ca	Ti	Fe	Sr	W	
2%Th+W 1144	38.55	19.23		2.84				3.38				33.75	1
2%Th+W 1145	49.17	42.78		2.08	3.24			1.04		0.63		1.04	
2%Th+W 1146	42.85	36.73		2.28	3.35	1.00	0.90	6.07		1.54		4.38	(
2%Th+W-vs-OhmasaGas 1147	39.02	41.83						1.22				13.97	
2%Th+W-vs-OhmasaGas 1149	53.98	29.32		8.75	3.81			1.51		0.92		1.72	
2%Th+W-vs-OhmasaGas 1150	34.67	46.91	1.41	3.16	4.35		0.43	2.01	0.88	2.36		2.94	(
2%Th+W-vs-OhmasaGas 1151	54.73	32.66						0.53			2.62	9.00	(
2%Th+W-vs-OhmasaGas 1152	49.35	35.58		0.83				1.47		0.45		10.43	1
2%Th+W-vs-OhmasaGas 1153	43.78	42.68		0.86				0.61				9.79	1
2%Th+W-vs-OhmasaGas 1154	50.96	36.07		1.67	2.13			1.32		0.86		6.20	(
Mean	45.71	36.38	1.41	2.81	3.38	1.00	0.66	1.92	0.88	1.13	2.62	9.32	1
Sigma	6.93	8.03	0.00	2.54	0.82	0.00	0.33	1.67	0.00	0.71	0.00	9.55	1
SigmaMean	2.19	2.54	0.00	0.80	0.26	0.00	0.10	0.53	0.00	0.22	0.00	3.02	(

2% Th+W

2%Th+W-vs-OhmasaGas 1183

2%Th+W-vs-OhmasaGas 1186

Element	At. No.	Line s.	Netto	Mass [%]	Mass Norm. [%]	Atom [%]	abs. error [%] (1 sigma)	rel. error [%] (1 sigma)
С	6	K-Serie	18626	17.25	20.39	43.73	2.26	13.08
0	8	K-Serie	32704	22.41	26.49	42.66	2.76	12.32
Al	13	K-Serie	12619	1.88	2.23	2.13	0.12	6.14
Si	14	K-Serie	12074	1.65	1.95	1.78	0.10	5.86
К	19	K-Serie	1868	0.43	0.51	0.33	0.04	9.95
Ca	20	K-Serie	12608	3.56	4.21	2.71	0.14	3.86
Ti	22	K-Serie	1082	0.44	0.52	0.28	0.04	10.18
Fe	26	K-Serie	1585	1.07	1.27	0.59	0.07	6.46
W	74	L-Serie	10712	31.64	37.39	5.24	1.17	3.71
Th	90	M-Serie	8959	4.28	5.05	0.56	0.17	3.97
			Sum	84.62	100.00	100.00		

Without exposure to Ohmasa Gas

2% Th+W 1143	Element	At. No.	Line s.	Netto	Mass [%]	Mass Norm. [%]
	С	6	K-Serie	1248	4.15	4.42
	0	8	K-Serie	8023	14.07	14.98
	w	74	L-Serie	12164	75.72	80.60
2% Th+W 1142	Element	At. No.	Line s.	Netto	Mass [%]	Mass Norm. [%]
	С	6	K-Serie	1380	4.34	4.54
	0	8	K-Serie	8325	13.99	14.64
	w	74	L-Serie	12884	76.66	80.22
	Th	90	M-Serie	372	0.58	0.60

TM3030Plus0645

2% Th+VV-vs-OhmasaGas 1182

2%Th+W-vs-OhmasaGas 1184

2%Th+W-vs-OhmasaGas 1185

2%Th+W-vs-OhmasaGas 1186

Th+W-vs-OhmasaGas 1188

2%Th+W-vs-OhmasaGas 1187

03:22 HMUD8.3 x1.5k 2019/09/03

2% Th+W

2%Th+W	-vs-Ohm	nasaGas 1	186						id	neutrino	E A	nBorF	Z	aBorF	E1	A1	nBorF1	Z1	aBorF1	E2	A2	nBorF2	Z2	aBorF2	MeV
				Mass	Mass Norm.	Atom	abs. error [%]	rel. error [%]	1449	none	W 180	b	74	b	Ti	50	b	22	b	Те	130	b	52	b	88.948400
Element	At. No.	Line s.	Netto	[%]	[%]	[%]	(1 sigma)	(1 sigma)	1475	none	W 184	b	74	b	Ca	48	b	20	b	Xe	136	b	54	b	85.144100
c	6	K Sorio	19626	17.25	20.20	12 72	2.26	12.09	1462	none	W 182	b	74	b	Ca	48	b	20	b	Xe	134	b	54	b	84.308600
C	0	K-Selle	10020	17.25	20.55	45.75	2.20	15.00	1448	none	W 180	b	74	b	Ca	48	b	20	b	Xe	132	b	54	b	84.258300
0	8	K-Serie	32704	22.41	26.49	42.66	2.76	12.32	144/	none	W 180	b	74	D	Ca	46	D	20	D	xe	134	D	54	D	81.8/1800
Al	13	K-Serie	12619	1.88	2.23	2.13	0.12	6.14	1461	none	W 182	D b	74	D h	Ca	46	b	20	b	Xe Xe	136	b b	54	b	81.375300
Si	14	K-Serie	12074	1.65	1.95	1.78	0.10	5.86	1444	none	W 180	b	74	b	Si	30	b	14	b	Nd	150	b	60	b	48.911800
ĸ	10	K-Sorio	1969	0.42	0.51	0.22	0.04	9.95	1443	none	W 180	b	74	b	Mg	26	b	12	b	Sm	154	b	62	b	39.475800
к -	15	K-Serie	1000	0.43	0.51	0.55	0.04	5.55	1441	none	W 180	b	74	b	Ne	22	b	10	b	Gd	158	b	64	b	29.337400
Ca	20	K-Serie	12608	3.56	4.21	2.71	0.14	3.86	1460	none	W 182	b	74	b	Ne	22	b	10	b	Gd	160	b	64	b	27.725900
Ti	22	K-Serie	1082	0.44	0.52	0.28	0.04	10.18	1439	none	W 180	b	74	b	Ne	20	b	10	b	Gd	160	b	64	b	25.539700
Fe	26	K-Serie	1585	1.07	1.27	0.59	0.07	6.46	1435	none	W 180	b	74	b	0	16	b	8	b	Dy	164	b	66	b	21.643300
14/	74	L Corio	10712	21.64	27.20	5.24	1 17	2 71	1437	none	W 180	b	74	b	0	18	b	8	b	Dy	162	b	66	b	19.887400
vv	/4	L-Serie	10/12	51.04	57.55	5.24	1.17	5.71	1458	none	W 182	b	74	D	0	18	b	8	b	Dy	164	b	66	D	18.890700
Th	90	M-Serie	8959	4.28	5.05	0.56	0.17	3.97	1436	none	W 180	D	74	D		17	۲ د	8	T b		163	۲ ج	60	T b	18.141800
			Sum	84.62	100.00	100.00			1434	none	W 180	b	74	b		12	h	6	b	Fr	168	<u></u> н	68	b	13 599800
	-		2020202020		20102020202020202020	2020202020			1453	none	W 182	b	74	b	C	12	b	6	b	Fr	170	b	68	b	11.885900
V	/ithout	t expos	sure t	to Oh	nmasa Ga	as	id A	Z pcaNCrust	1432	none	W 180	b	74	b	C	13	f	6	f	Er	167	f	68	f	10.783000
	222 22 22						252 180	74 0.1400	1465	none	W 183	f	74	f	C	13	f	6	f	Er	170	b	68	b	10.643300
2% Th-	-W 1143	Element	At. No.	Line s.	Netto Mass	Mass No	rm. 253 182	74 26.4100	1430	none	W 180	b	74	b	В	11	f	5	b	Tm	169	f	69	b	3.097200
		8			[%]	[%]	254 183	74 14 4000	1429	none	W 180	b	74	b	He	4	b	2	b	Hf	176	b	72	b	2.540200
	5	C	6	K-Serie	e 1248 4.15		4.42	74 20 6400	1451	none	W 182	b	74	b	He	4	b	2	b	Hf	178	b	72	b	1.673900
		0	8	K-Serie	e 8023 14.07	14	4.98	74 30.0400	1463	none	W 183	f	74	f	He	4	b	2	b	Hf	179	f	72	f	1.552800
P- IN		W	74	L-Serie	e 12164 75.72	80	0.60	74 28.4100	1471	none	W 184	b	74	b	He	4	b	2	b	Ηf	180	b	72	b	1.469000

2% Th+W 1143	Element	At. No.	Line s.	Netto	Mass [%]	Mass Norm. [%]
	С	6	K-Serie	1248	4.15	4.42
	0	8	K-Serie	8023	14.07	14.98
	W	74	L-Serie	12164	75.72	80.60
2% Th+W 1142	Element	At. No.	Line s.	Netto	Mass [%]	Mass Norm. [%]
	С	6	K-Serie	1380	4.34	4.54
	0	8	K-Serie	8325	13.99	14.64
	w	74	L-Serie	12884	76.66	80.22
	Th	90	M-Serie	372	0.58	0.60

			6666	
0000	id	Α	Ζ	pcaNCrust
0000	252	180	74	0.1400
0000	253	182	74	26.4100
0000	254	183	74	14.4000
0000	255	184	74	30.6400
0000	256	186	74	28.4100
00		0-0-0-0-0	2020	

www.nanosoft.co.nz/Fission.php

E = 'W' order by MeV desc Cold neutrino off

TM3030Plus0634

2019/09/03 02:27 HMUD8.3 x1.5k

Carbon film

ALC: NOT											
	Spectrum – Atom %	С		Al	Si	S	К	Ca	Fe	Sr	Sn
	2%Th+W-vs-OhmasaGas 1167	75.70	17.27			0.40		1.36		1.19	
	2%Th+W-vs-OhmasaGas 1168	76.10	15.93					0.96			
	2%Th+W-vs-OhmasaGas 1169	55.26	34.52	0.64				1.20	0.68		
U	2%Th+W-vs-OhmasaGas 1170	54.08	31.94	1.10	3.68		0.53	2.13	2.26		
	2%Th+W-vs-OhmasaGas 1171	49.93	36.76					1.02	0.89		0.75
no.	2%Th+W-vs-OhmasaGas 1172	49.94	33.51	0.75	1.38			1.91	6.14		0.95
	2%Th+W-vs-OhmasaGas 1173	51.04	39.00	0.91							
	2%Th+W-vs-OhmasaGas 1174	60.34	28.39	0.68	2.42			1.11	0.54		0.48
	2%Th+W-vs-OhmasaGas 1175	45.54	36.10		6.44			1.61	1.40		
	2%Th+W-vs-OhmasaGas 1176	54.95	32.78	0.94				1.06	0.76		
	2%Th+W-vs-OhmasaGas 1177	48.22	37.94	0.95				1.84	1.73		
	2%Th+W-vs-OhmasaGas 1178	52.27	35.88	0.84				1.02			0.60
	2%Th+W-vs-OhmasaGas 1180	52.73	33.25	0.83	2.46			1.60	0.77		
	2%Th+W-vs-OhmasaGas 1181	67.07	23.68					0.65			
	Mean	56.66	31.21	0.85	3.28	0.40	0.53	1.34	1.69	1.19	0.70
	Sigma	9.71	7.33	0.14	1.95	0.00	0.00	0.44	1.76	0.00	0.20
1	SigmaMean	2.60	1.96	0.04	0.52	0.00	0.00	0.12	0.47	0.00	0.05

111

50 µm

What was in the captured particles?

similar elements always with W

Atomic concentration [%]	102020202			5,5,5,5	5555X		0202020	2020202	000000		
Spectrum	С	0	Na	AI	Si	Ρ	K	Ca	Fe	Sr	w
2%Th+W-vs-OhmasaGas Filter 1226	67.48	24.67	1.02	1.82	2.95		0.38	0.37	0.15		1.17
2%Th+W-vs-OhmasaGas Filter 1227	73.23	21.55		0.53	1.27	0.36		0.49			2.57
2%Th+W-vs-OhmasaGas Filter 1228	80.30	13.50								1.72	4.48
2%Th+W-vs-OhmasaGas Filter 1229	70.94	22.24		0.59				3.43		0.64	2.15
2%Th+W-vs-OhmasaGas Filter 1230	96.62	3.10									0.28
Mean	77.71	17.01	1.02	0.98	2.11	0.36	0.38	1.43	0.15	1.18	2.13
Sigma	11.56	8.84	0.00	0.73	1.18	0.00	0.00	1.73	0.00	0.76	1.59
SigmaMean	5.17	3.95	0.00	0.32	0.53	0.00	0.00	0.78	0.00	0.34	0.71

2%Th+W-vs-OhmasaGas Filter 1227

V-vs-OhmasaGas Filt

2%Th+W-vs-OhmasaGas Filter 534 MAG: 1500x HV: 15 kV WD: 10.1 mm Px: 0.13 µm SEM

30 µm

Fig. 2 fire.

This part VEGA video frame is overlaid with Fig. 2 from: Surface tension in plasmas related to double layer formation January 2001 Journal of Plasma and Fusion Research 4:559-563 Sebastian Popescu, E. Lozneanu

(a) Ball of fire schematic representation with the core charge uniformly distributed in volume. **R** is the core raduis and δ the DL thickness; (b) Potential profile of the stationary stable ball of

(a)

(b)

R R

0

Ti + Ohmasa Gas + PTFE

MFMP - Project OHMA Ohmasa Gas + Titanium vs PTFE TM3030Plus0095

Ti	Cr	Fe	Ni
15.72	0.32	3.30	1.26
14.83	0.23	4.79	1.14
17.17		3.82	0.79
29.95			
45.27			
26.00			
22.04		1.50	0.27
24.43	0.28	3.35	0.86
10.75	0.06	1.38	0.45
4.06	0.02	0.52	0.17

2019/08/25 19:12 H

id	neutrino	id_sub	E1	A1	nBorF1	Z1	aBorF1	E2	A2	nBorF2	Z2	aBorF2	E	Α	nBorF	Z	aBorF	
947	none	1192	He	4	b	2	b	Ti	48	b	22	b	Cr	52	b	24	b	9.
948	none	1194	He	4	b	2	b	Ti	49	f	22	f	Cr	53	f	24	f	9.
945	none	1190	He	4	b	2	b	Ti	46	b	22	b	Cr	50	b	24	b	8.
949	none	1196	He	4	b	2	b	Ti	50	b	22	b	Cr	54	b	24	b	7.

id	neutrino	id_sub	E1	A1	nBorF1	Z1	aBorF1	E2	A2	nBorF2	Z2	aBorF2	E	Α	nBorF	Z	aBorF	
953	none	294	He	4	b	2	b	Cr	50	b	24	b	Fe	54	b	26	b	8.
956	none	299	He	4	b	2	b	Cr	54	b	24	b	Fe	58	b	26	b	7.
954	none	295	He	4	b	2	b	Cr	52	b	24	b	Fe	56	b	26	b	7.
955	none	297	He	4	b	2	b	Cr	53	f	24	f	Fe	57	f	26	f	7.

Full SQL Query: "select * from FusionAll where A1 = 4 and E2 = 'Fe' order by MeV desc limit 100" 5 rows were found. Results (in new tab - may need refreshing - temporarily stored on server - make your own copy)

10.0																		
id	neutrino	id_sub	E1	A1	nBorF1	Z1	aBorF1	E2	A2	nBorF2	Z2	aBorF2	E	A	nBorF	Z	aBorF	
962	none	394	He	4	b	2	b	Fe	58	b	26	b	Ni	62	b	28	b	7.
961	none	392	He	4	b	2	b	Fe	57	f	26	f	Ni	61	f	28	f	6.
958	none	389	He	4	b	2	b	Fe	54	b	26	b	Ni	58	b	28	b	6.
960	none	390	He	4	b	2	b	Fe	56	b	26	b	Ni	60	b	28	b	6.
959	left	313	He	4	b	2	b	Fe	56	b	26	b	Co*	60	b	27	f	3.
						202020			565656		5665656	222222222222222	585858585	35355	55555555	5:5:5:	****	5555

			22	2150		82	C						20.0		<u></u>	S	· · · · · · · · · · · · · · · · · · ·	
id	neutrino	id_sub	E1	A1	nBorF1	Z1	aBorF1	E2	A2	nBorF2	Z2	aBorF2	Е	Α	nBorF	Z	aBorF	I
2542	none	1207	С	13	f	6	f	Ti	47	f	22	f	Ni	60	b	28	b	22.6
2544	none	1211	С	13	f	6	f	Ti	49	f	22	f	Ni	62	b	28	b	21.3
2543	none	1209	С	13	f	6	f	Ti	48	b	22	b	Ni	61	f	28	f	18.8
2439	none	1206	С	12	b	6	b	Ti	46	b	22	b	Ni	58	b	28	b	16.3
2442	none	1208	С	12	b	6	b	Ti	48	b	22	b	Ni	60	b	28	b	15.9
2443	none	1210	С	12	b	6	b	Ti	49	f	22	f	Ni	61	f	28	f	15.6
2444	none	1212	С	12	b	6	b	Ti	50	b	22	b	Ni	62	b	28	b	15.3

Reactions

Tibased Alpha conjugate nuclei

Step 1 - Fusion of apha particles with Ti

Full SQL Query: "select * from FusionAll where neutrino = 'none' and A1 = 4 and E2 = 'Ti' order by MeV desc limit 100" 4 rows were found. Results (in new tab - may need refreshing - temporarily stored on server - make your own copy)

Step 2 - Fusion of apha particles with Cr synthesised in step 1

Full SQL Query: "select * from FusionAll where neutrino = 'none' and A1 = 4 and E2 = 'Cr' order by MeV desc limit 100" 4 rows were found. Results (in new tab - may need refreshing - temporarily stored on server - make your own copy)

Step 3 - Fusion of apha particles with Fe synthesised in step 2

Full SQL Query: "select * from FusionAll where neutrino = 'none' and E1 = 'C' and E2 = 'Ti' order by MeV desc limit 100" 7 rows were found. Results (in new tab - may need refreshing - temporarily stored on server - make your own copy)

Solin Patent (1992)

- A superconducting nuclear condensate is a magnetic liquid metal nuclear fuel that generates energy with the generation of coherent radiation under conditions of nuclear phase transformations in the mass of the initial product and the combination of electromagnetic, gravitational and nuclear interactions in it."
- "synthesis of elements from helium to iron and other heavier elements, in particular carbon, nitrogen, oxygen, potassium, calcium, sodium , aluminum, magnesium, silicon, iron,"

Solin Patent

- superfluid (superconducting) nuclear plasma. Neutron stars"
- Obeys laws of Bose condensate and acts as a classical coherent wave.
- separated from each other by voids
- 2001 patent has far clearer SEM images of SR and other features

* "The physical processes in this substance are similar to those that occur in a

Therefore, it is detected spontaneously (without chemical etching of the nuclear fusion product) due to the implementation of coherent (ultrafast, explosive) crystallisation. It consists of many fragments and dispersed areas in the form of ordered clusters of micro crystals, which are

nic conc	entrat	ion [%	6]											
ctrum	С	0	F	Na	Mg	AI	Si	Р	S	CI	K	Са	Ti	Fe
	48.63	35.11	4.51	2.07	0.42	0.32	0.90	0.27	0.52	0.54	0.82	1.26	4.43	0.18
	48.66	32.10	7.49	2.13	0.39	0.38	0.86	0.39	0.33	0.70	0.81	1.98	3.61	0.15
	25.35	33.81	22.85	1.36			0.56				0.31	2.43	13.33	
n	40.88	33.67	11.62	1.85	0.40	0.35	0.78	0.33	0.43	0.62	0.64	1.89	7.12	0.16
а	13.45	1.51	9.84	0.43	0.02	0.04	0.19	0.09	0.13	0.11	0.29	0.59	5.39	0.02
aMean	7.77	0.87	5.68	0.25	0.01	0.02	0.11	0.05	0.08	0.07	0.17	0.34	3.11	0.01
				Dľ			C	a	te		n	U		

nic conc	entrat	ion [%	6]					
ectrum	С	0	F	Na	Mg	AI	Si	Ρ
	48.63	35.11	4.51	2.07	0.42	0.32	0.90	0.27

	M	FMP An	alysis
55 H	D8.8	x1.0k	100 µm

I the second second lab

212 SEM	MAG: 4000x	HV: 15 kV	WD: 8.8 mm	Рх: 50 пг		
Name	Date	Time	HV [kV]	Mag	WD [mm]	
212	8/25/2019	9:01:40 P	M 15.0 keV	4000x	8.8 mm	

			3333	5555				55					3333		33333				
268	North States	メート				264 C		266				26	5						
1000								≺)) r	nagi	CSOL	ind la	ab							
the set								MF	MP	Ana	lysi	s							
213 SFM MAG: 400	iûx HV:	15 kV	WD: 8.8	mm P	x: 50 n	m	æ				10	im							
Name Date	Ti	me	HV	0	Mag	WD	nl												
213 8/25/20	019 9:	12:47 F	PM 15.	0 keV	4000>	(8.8)	mm												
Atomic conc	entrat	tion [%]	-	NIE	A 1	e:	D	6	CL	L.	C -	т:	<u></u>	F -	A.I.	C 11	la.	
263	22.92	IN	26.26	F 12 15	1 92	AI 0.48	31 27/2	P 1 2/1	د ۵ م	2 20	N 4.06	0.86	1.09	Cr	ге 0.57		Cu 0.45	m	
264	64.37	5.40	16.32	0.60	0.88	0.49	1.63	0.42	1.05	1.52	2.19	3.04	0.78		0.73	0.20	0.37		
265	35.34		30.71	2.63	2.30	0.59	2.01		0.43	2.67	2.74	3.26	16.92		0.40				
266	56.88	6.48	21.83	0.80	0.90		0.61		0.35	3.38	2.80	2.62	1.65		0.20		0.24	1.25	
267	29.47	1	56.64			1.19				1.87	0.66	0.43	7.95		0.31		1.46		
268	70.62		10.66				0.49		0.59	2.98	1.35	4.68	0.95	0.66	2.70		4.31		
269	69.67		17.70	2.11	0.76		0.82	0.49	0.37	0.50	0.81	5.84	0.48		0.28		0.18		
Mean	51.45	5.94	25.73	3.86	1.35	0.69	1.33	0.75	0.63	2.30	2.09	4.25	4.26	0.66	0.74	0.30	1.17	1.25	
Sigma	18.02	0.76	15.14	5.26	0.71	0.34	0.80	0.51	0.31	1.05	1.23	3.00	6.17	0.00	0.88	0.14	1.61	0.00	19
SigmaMean	6.81	0.29	5.72	1.99	0.27	0.13	0.30	0.19	0.12	0.40	0.46	1.13	2.33	0.00	0.33	0.05	0.61	0.00	

Flourine based Alpha Conjugate nuclei

9/08/25 20:55 H D8.8 x1.0k

Flourine based Alpha Conjugate nuclei

	Atomi	c co	nc	entrat	ion	[%	6]														
	Spect	trur	n	С	0		F	N	а	Mg	Al		Si	Ρ		S	Cl	Κ	Ca	Ti	I
	260			48.63	35.1	.1	4.51	2.0	07	0.42	0.32	2 0	.90	0.27	7 0.	52	0.54	0.82	1.26	4.43	0
	261			48.66	32.1	0	7.49	2.1	13	0.39	0.38	3 0	.86	0.39	ЭO.	33	0.70	0.81	1.98	3.61	0
	262			25.35	33.8	1	22.85	1.3	36			C).56					0.31	2.43	13.33	
00000																					
	id_sub	E1	A1	nBorF	1 Z1	аE	BorF1	E2	A2	nBor	F2Z	Z2	aBo	rF2	E	Α	nBorF	Za	aBorF	Me	۶V
	375	He	4	b	2	_	b	F	19	f		9	b)	Na	23	f	11	b	10.46	53
	727	He	4	b	2		b	Na	23	f f		11	ł	C	AI	27	f	13	b	10.09	83
	13	He	4	b	2		b	A	2	7	f	1	3	b	Ρ	31	f	15	b	9.66	43
0000																					
	857	He	4	b	2	Į	b	P	3	1	f	15	5	b	CI	35	f	17	b	6.99	65
	256	He	4	b	2	Τ	b	C	3	5	f	1	7	b	K	39	f	19	b	7.21	35
I	296	He	4	b	2		b	K	39) f	:	19		b	Ca	43	f	20	f	7.02	06
	146	He	4	b	2		b	Ca	4	3	f	20	0	f	Ti	47	f	22	f	8.96	56
		5666666	0000000	525252525252525252	5252525252	32323	030303030303030	2525252	525252	525952525252	5252525252	252525	25555555	222222	हराउर	33333	1252525252525	04040404040	1515-15-15-15	252525252525	Mar

Single isotope

Multiple isotope

		Atomi	с со	nc	entrat	ion [%]		nununun												
		Spec	trur	n	С	0	F	N	a	Mg	AI	5	Si	Ρ		S	CI	Κ	Ca	Ti	I
		260			48.63	35.1	1 4.51	2.0	07 (0.42	0.32	2 0.	90	0.27	0.	52	0.54	0.82	1.26	4.43	0
		261			48.66	32.1	0 7.49	2.:	13 (0.39	0.38	0.	86	0.39	0.	33	0.70	0.81	1.98	3.61	0
		262			25.35	33.8	1 22.85	1.	36			0.	56					0.31	2.43	13.33	Ē
id	neutrino	id_sub	E1	A1	nBorF1	L Z1	aBorF1	E2	A2	nBor	F2Z	2a	Bor	F2	E	A	nBorF	Z	aBorF	M	eV
913	none	375	He	4	b	2	b	F	19	f	9	9	b	Ν	la	23	f	11	b	10.46	553
917	none	727	He	4	b	2	b	Na	23	f	1	L1	b		AI 2	27	f	13	b	10.09)83
921	none	13	He	4	b	2	b	Α	I 27	7	f	13	;	b	Ρ	31	f	15	b	9.66	43
925	none	857	He	4	b	2	b	P	31	LĮ –	f	15		b	CI	35	f	17	' b	6.99)65
929	none	256	He	4	b	2	b	С	1 35	5	f	17	'	b	K	39	f	19	b	7.21	.35
935	left	296	He	4	b	2	b	K	39	f	-	19	t)	Ca	43	f	20	f	7.02	206
939	none	146	He	4	b	2	b	Ca	a 43	3	f	20		f	Ti	47	f	22	f	8.96	56
3535355555			85858585	5000000		5255555555555		5555555	555555	3535555555	5555555555	333333	BISIS	33333333	33335	553333	333533555	33333333	555555555	333333333	2333

10 Yen coin

er.

youtu.be/S7ye_bYQgFw

Aalto University

Creation of Dirac Monopoles in Spinor Bose-Einstein Condensates

youtu.be/HSDolf5FY2s sci-hub.tw/10.1103/PhysRevLett.103.030401 2009

10 Yen coin vs Ohmasa Gas Project OHMA MFMP - 2019

https://rgdn.info/en/chto_nesut_bogi_v_sumochkah

10 Yen coin Sulphur Synthesis

TM3030Plus0047

2019/08/24 18:45 HMUD7.8 x5.0k Ohmasa Gas vs 10 Yen coin Fusion of Oxygen to Sulphur

 $nanosoft.co.nz/{\sf Fusion.php}$

Fusion Reactions - data provided by Dr. Alexander Parkhomov Facilitated by the Martin Fleischmann Memorial Project

Input used for this run:

Full SQL Query: "select * from FusionAll where neutrino = 'none' and E1 = '0' and E2 = '0' order by MeV desc" 4 rows were found. Results (in new tab - may need refreshing - temporarily stored on server - make your own copy)

	· · · · · · · · · · · · · · · · · · ·																	
id	neutrino	id_sub	E1	A1	nBorF1	Z1	aBorF1	E2	A2	nBorF2	Z2	aBorF2	Е	Α	nBorF	Z	aBorF	MeV
2963	none	842	0	17	f	8	f	0	17	f	8	f	S	34	b	16	b	28.320200
2902	none	843	0	16	b	8	b	0	18	b	8	b	S	34	b	16	b	24.414500
2901	none	841	0	16	b	8	b	0	17	f	8	f	S	33	f	16	f	21.040600
2900	none	840	0	16	b	8	b	0	16	b	8	b	S	32	b	16	b	16.539600

10 Japanese yen 95% Cu 3-4% Zn 1-2% Sn^[1]

SEM Cu Zn Sn

TM3030Plus0045

2019/08/24 18:30 HMUD7.8 x800 100 µm

Atomic concentration [%]														
Spe	ectrum	С	0	S	Cu	Zn	Sn							
99	Surface	36.00	11.24		49.34	3.12	0.31							
100	Fleck	34.63	29.39		21.61	13.70	0.67							
101	Miner	47.74	14.78	2.83	32.08	2.58								
102	Miner	51.86	14.40	2.76	29.18	1.80								
104	Miner	42.40	8.51	1.11	44.38	3.35								
 106	Miner	41.07	10.24	1.35	43.13	3.92								
107	Surface	37.64	12.32		46.96	2.70								

CT

20 µm

How it was made - youtu.be/OOcWAcecPxE?t=5258 Look with optical microscope - youtu.be/MJAJ_A4iBow

Indium vs Ohmasa Gas

Indium melting point 156.6 °C

Indium vs Ohmasa Gas

Atomic con	Atomic concentration [%]										
Spectrum	С	N	0	Si	In						
381	45.66	6.90	37.57		9.87						
382	4.56		55.81		39.63						
383	51.63		40.49	0.44	7.44						
384	32.76		50.06		17.18						
385	47.41		40.91	0.47	11.21						
Mean	36.40	6.90	44.97	0.46	17.06						
Sigma	19.15	0.00	7.66	0.02	13.11						
SigmaMear	8.56	0.00	3.43	0.01	5.87						

232 8/26/2019 2:19:49 AM 15.0 keV 1000x 8.3 mm

HV: 15 kV WD: 8.2 mm Px: 0.11 m

20 µm

Carbon film

Atomic conc	Atomic concentration [%]													
Spectru	С	N	0	Na	AI	Si	Fe	In						
405	44.81	8.67	36.04					10.48						
402	33.46		33.38	0.98	0.87	1.59		29.73						
403	25.01		48.34		6.73	1.01	1.16	17.75						
404	27.34		56.98					15.68						
Mean	32.65	8.67	43.68	0.98	3.80	1.30	1.16	18.41						
Sigma	8.85	0.00	11.00	0.00	4.14	0.41	0.00	8.14						
SigmaMean	4.43	0.00	5.50	0.00	2.07	0.20	0.00	4.07						

Indium vs Ohmasa Gas TM3030Plus0199

Indium vs Ohmasa Gas TM3030Plus0198

Conclusion

- solution to radioactively contaminated areas in the world
- large scale transmutation of elements
- for treating dangerous products of the fission industry

Ohmasa vibrator appears to be able to bring about transmutation to both fluids and metals in its environment, potentially providing a much needed

Ohmasa Gas applied to metals appears to act as 'instant LENR' causing

Since Ohmasa Gas appears to fission heavy elements, it should be suitable

Thankyou - Q&A

- Alan Goldwater and MagicSoundLabs
- To all of the crowd researchers that made this possible
- possible

To the generous donors, in particular to Charles and Sho that made this trip

When Proton Meets Monopole

Consider then what will happen if a massive monopole comes very close to a proton, attracted perhaps by the small magnetic dipole field which every proton has. The quarks within the proton would have a reasonable probability of encountering the core region of the monopole. And when this happens, the quarks are very likely to "forget" their identity and to be changed to some other flavor of quark or lepton. If this happens, proton decay becomes a near certainty. But the monopole, the cause of it all, is unaffected. It is still "stuck" with its surplus of magnetic flux, so it cannot participate in the decay process.

Thus the monopole is the analog of a chemical catalyst. It is an *agent provocateur*. It wanders through matter stimulating proton decay and nuclear breakup without being changed itself. A single monopole can do this over and over again as rapidly as it can find its way into successive protons or nuclei. And with each such event, a quantity of energy is liberated which is far greater than that released in uranium fission. The implications of monopole catalysis are enormous. All matter, be it garbage or junk or gold ingots, becomes a source of unlimited energy. Given a suitable supply of monopoles the energy needs of the world are limited only by the supply of matter to be catalyzed into energy. If massive monopoles are ever found, they will be of incalculable worth for physical research and for energy production.

John G. Cramer - 1983

Center for Experimental Nuclear Physics and Astrophysics https://www.npl.washington.edu/AV/altvw01.html